
epd-norge Pending publication with EPD-Norge

Environmental product declaration

in accordance with ISO 14025 and EN 15804+A2

Steni Colour Reuse - Virgin Panel

The Norwegian EPD Foundation

Owner of the declaration:

Steni AS

Steni Colour Reuse - Virgin Panel

Declared unit:

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core

NPCR 010:2019 Part B for Building boards

Program operator:

The Norwegian EPD Foundation

Declaration number:

Registration number:

Issue date:

Valid to:

28.09.2027

EPD software:

LCAno EPD generator ID: 50087

1/11

General information

Product

Steni Colour Reuse - Virgin Panel

Program operator:

Post Box 5250 Majorstuen, 0303 Oslo, Norway The Norwegian EPD Foundation Phone: +47 23 08 80 00 web: post@epd-norge.no

Declaration number:

Pending publication with EPD-Norge

This declaration is based on Product Category Rules:

CEN Standard EN 15804:2012+A2:2019 serves as core PCR NPCR 010:2019 Part B for Building boards

Statement of liability:

The owner of the declaration shall be liable for the underlying information and evidence. EPD Norway shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Declared unit:

1 m2 Steni Colour Reuse - Virgin Panel

Declared unit with option:

A1-A3,A4,A5,B2,C1,C2,C3,C4,D

Functional unit:

1 m2 covering surface of installed building board with a specific function, from cradele-to-grave, with activities needed for a study period of 60 years for the building

General information on verification of EPD from EPD tools:

Independent verification of data, other environmental information and the declaration according to ISO 14025:2010, § 8.1.3 and § 8.1.4. Verification of each EPD is made according to EPD-Norway's guidelines for verification and approval requiring that tools are i) integrated into the company's environmental management system, ii) the procedures for use of the EPD tool are approved by EPD-Norway, and iii) the process is reviewed annually by an independent third party verifier. See Appendix G of EPD-Norway's General Programme Instructions for further information on EPD tools

Verification of EPD tool:

Independent third party verification of the EPD tool, background data and test-EPD in accordance with EPDNorway's procedures and guidelines for verification and approval of EPD tools.

Third party verifier:

Elisabet Amat, GREENIZE projects

(no signature required)

Owner of the declaration:

Steni AS

Contact person: Herleif Rimstad Phone: + 47 926 35 625 e-mail: herleif.rimstad@steni.no

Manufacturer:

Steni AS

Place of production:

Steni AS Lågendalsveien 2633 3277 STEINSHOLT, Norway

Management system:

ISO 9001:2015, sert. no.: 0102916

Organisation no:

918 150 145

Issue date:

Valid to:

28.09.2027

Year of study:

2020

Comparability:

EPD of construction products may not be comparable if they not comply with EN 15804 and seen in a building context.

Development and verification of EPD:

The declaration is created using EPD tool lca.tools ver EPD2022.03, developed by LCA.no. The EPD tool is integrated in the company's management system, and has been approved by EPD Norway.

Developer of EPD: Jan Marius Kruse

Reviewer of company-specific input data and EPD: Jan Marius Kruse

Approved:

Håkon Hauan, CEO EPD-Norge

Product

Product description:

Steni Colour Reuse is a robust stone-composite panel with

a smooth surface designed for use as exterior ventilated cladding

on all types of buildings. The panels consist of several layers of materials

that are hardened and cured to give durability and a long-lasting surface.

14.17

Steni Colour Reuse is delivered in a wide range of colours and three gloss variations. Low maintenance and a 60-year warranty secure low LCC.

Product specification

Steni Colour Reuse comes in 12 standard formats and drilling paterns specially designed for their reusability.

Materials	kg	%
Additives	0,06	0,46
Binder	2,63	19,28
Coating materials	0,12	0,84
Filler/aggregate	10,25	75,07
Reinforcement	0,59	4,35
Total	13,65	
Packaging	kg	%
Packaging - Plastic	0,01	2,49
Packaging - Wood	0,51	97,51

Technical data:

Total incl. packaging

Steni Colour Reuse is 6mm thick fiberglass-rainforced stone composite panel with a core of crushed stone, with an avrage wight of 12kg/m2. The panel comes in various colors, sizes and glosses.

The panel has SINTEF technical approval TG 2165.

Market:

Main markets; Europe, US, Canada, UAE.

Reference service life, product

The panel has 60 years as referance service life under normal conditions, assuming installation, use and maintenance instructions are followed.

Reference service life, building or construction works

60 years

LCA: Calculation rules

Declared unit:

1 m2 Steni Colour Reuse - Virgin Panel

Cut-off criteria:

All major raw materials and all the essential energy is included. The production processes for raw materials and energy flows with very small amounts (less than 1%) are not included. These cut-off criteria do not apply for hazardous materials and substances.

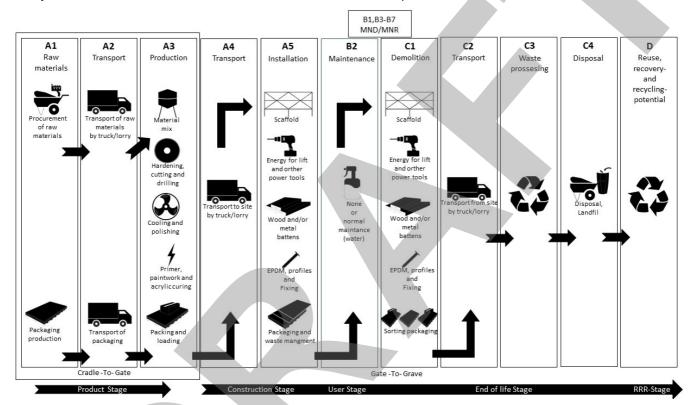
Allocation:

The allocation is made in accordance with the provisions of EN 15804. Incoming energy and water and waste production in-house is allocated equally among all products through mass allocation. Effects of primary production of recycled materials is allocated to the main product in which the material was used. The recycling process and transportation of the material is allocated to this analysis.

Data quality:

Specific data for the product composition are provided by the manufacturer. The data represent the production of the declared product and were collected for EPD development in the year of study. Background data is based on EPDs according to EN 15804 and different LCA databases. The data quality of the raw materials in A1 is presented in the table below.

Materials	Source	Data quality	Year
Additives	ecoinvent 3.6	Database	2019
Additives	EPD-EFC-20210196-IBG1-EN	EPD	2021
Binder	ecoinvent 3.6	Database	2019
Binder	ecoinvent 3.6	Database	2020
Coating materials	ecoinvent 3.6	Database	2019
Filler/aggregate	ecoinvent 3.6	Database	2019
Packaging - Plastic	ecoinvent 3.6	Database	2019
Packaging - Wood	ecoinvent 3.6	Database	2019
Reinforcement	ecoinvent 3.6	Database	2019



System boundaries (X=included, MND=module not declared, MNR=module not relevant)

	P	roduct stag	ge		uction on stage	U			Use stage	e stage			End of life stage				Beyond the system boundaries
wie Q	materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De- construction demolition	Transport	Waste	Disposal	Reuse-Recovery- Recycling-potential
	A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
	Χ	Х	X	X	X	MNR	Х	MNR	MNR	MNR	MNR	MNR	X	Х	Х	Х	X

System boundary:

The analysis as shown includes "Cradel To Gate" with the modules A1-A3, and with options A4, A5, B2, C1,C2,C3 and C4.

Additional technical information:

The panel has SINTEF technical approval TG 2165
Fire class: B-S1,d0 according to EN 13501-1.
Dimentional stability: 0,04% according to EN 438-2 part 18.
Thickness: 6mm according to EN 438-2 part 5.

The product is registered in: Sunda Hus, Byggvarubedömningen, Nordic ECO Label.

LCA: Scenarios and additional technical information

The following information describe the scenarios in the different modules of the EPD. The only maintenance neaded is cleaning with water approximately every 10th year.

After end of life, the panels will be taken down and reused

•					
Transport from production place to user (A4)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, over 32 tonnes, EURO 6 (km)	53,3 %	300	0,023	l/tkm	6,90
Assembly (A5)	Unit	Value			
components to reuse	kg/DU	0,51			
Electricity mix, Norway	kWh/DU	0,01			
Waste, mixed plastic, to average treatment (kg)	kg	0,01			
Waste, packaging wood (kg)	kg	0,51			
Maintenance (B2)	Unit	Value			
Water (I)	kg/DU	0,03			
De-construction demolition (C1)	Unit	Value			
Electricity mix, Norway	kWh/DU	0,01			
Transport to waste processing (C2)	Capacity utilisation (incl. return) %	Distance (km)	Fuel/Energy Consumption	Unit	Value (Liter/tonne)
Truck, 16-32 tonnes, EURO 6 (km)	36,7 %	50	0,043	l/tkm	2,15
Waste processing (C3)	Unit	Value			
Components to reuse in C3	kg/DU	11,40			
Disposal (C4)	Unit	Value			
Disposal of facade panels (C4)	kg/DU	0,60			

LCA: Results

The LCA results are presented below for the declared unit defined on page 2 of the EPD document.

Envir	onmental impact										
	Indicator	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
	GWP-total	kg CO ₂ -eq	2,32E+01	3,14E-01	1,97E-02	1,04E-05	1,06E-04	9,81E-02	0,00E+00	2,54E-03	-2,15E+01
	GWP-fossil	kg CO ₂ -eq	2,39E+01	3,14E-01	1,96E-02	1,03E-05	1,02E-04	9,80E-02	0,00E+00	2,54E-03	-2,23E+01
	GWP-biogenic	kg CO ₂ -eq	-6,16E-01	1,34E-04	6,98E-05	6,48E-08	3,04E-06	4,06E-05	0,00E+00	0,00E+00	7,98E-01
	GWP-luluc	kg CO ₂ -eq	1,22E-02	9,55E-05	4,05E-06	1,67E-08	4,50E-07	3,49E-05	0,00E+00	5,21E-07	-1,14E-02
(3)	ODP	kg CFC11 -eq	2,39E-06	7,56E-08	2,25E-09	1,00E-12	7,00E-12	2,22E-08	0,00E+00	1,24E-09	-2,28E-06
Œ.	AP	mol H+ -eq	1,41E-01	1,01E-03	1,13E-04	6,00E-08	4,11E-07	2,82E-04	0,00E+00	2,48E-05	-1,14E-01
-	EP-FreshWater	kg P -eq	7,05E-04	2,49E-06	1,71E-07	8,22E-10	4,37E-09	7,83E-07	0,00E+00	1,58E-07	-6,84E-04
4	EP-Marine	kg N -eq	2,32E-02	2,21E-04	4,81E-05	9,51E-09	7,16E-08	5,57E-05	0,00E+00	9,44E-06	-2,11E-02
-	EP-Terrestial	mol N -eq	2,59E-01	2,47E-03	5,16E-04	1,11E-07	8,96E-07	6,23E-04	0,00E+00	1,04E-04	-2,39E-01
	POCP	kg NMVOC -eq	1,17E-01	9,68E-04	1,33E-04	3,48E-08	2,35E-07	2,39E-04	0,00E+00	2,96E-05	-1,09E-01
	ADP-minerals&metals ¹	kg Sb-eq	3,06E-04	5,59E-06	2,30E-07	2,88E-10	2,57E-09	2,71E-06	0,00E+00	4,79E-09	-2,28E-04
	ADP-fossil ¹	MJ	3,70E+02	5,09E+00	1,66E-01	1,76E-04	1,42E-03	1,48E+00	0,00E+00	8,25E-02	-3,46E+02
<u>%</u>	WDP ¹	m^3	1,06E+03	3,90E+00	5,20E-01	3,15E-03	2,64E-01	1,43E+00	0,00E+00	2,56E-04	-1,01E+03

GWP-total = Global Warming Potential total; GWP-fossil = Global Warming Potential fossil fuels; GWP-biogenic = Global Warming Potential biogenic; GWP-luluc = Global Warming Potential land use and land use change; ODP = Depletion potential of the stratospheric ozone layer, AP = Acidification potential, Accumulated Exceedance; EP-freshwater = Eutrophication potential, fraction of nutrients reaching freshwater end compartment: EP-marine = Eutrophication potential, fraction of nutrients reaching marine end compartment; EP-terrestrial = Eutrophication potential, Accumulated Exceedance; POCP = Formation potential of tropospheric ozone; ADP-minerals&metals = Abiotic depletion potential for non-fossil resources; ADP-fossil = Abiotic depletion for fossil resources potential; WDP = Water (user) deprivation potential, deprivation-weighted water consumption

Remarks to environmental impacts

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Additio	Additional environmental impact indicators												
Inc	dicator	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D		
PM		Disease incidence	1,45E-06	2,88E-08	1,37E-09	1,00E-12	4,00E-12	6,00E-09	0,00E+00	5,41E-10	-1,14E-06		
	IRP ²	kgBq U235 -eq	7,75E-01	2,23E-02	6,25E-04	1,22E-06	2,72E-05	6,48E-03	0,00E+00	4,06E-04	-7,07E-01		
	ETP-fw ¹	CTUe	7,24E+02	3,72E+00	2,00E-01	1,90E-04	2,49E-03	1,10E+00	0,00E+00	4,45E-02	-6,85E+02		
40.	HTP-c ¹	CTUh	7,01E-08	0,00E+00	2,00E-11	0,00E+00	0,00E+00	0,00E+00	0,00E+00	1,00E-12	-1,14E-07		
4ge	HTP-nc ¹	CTUh	7,47E-07	3,60E-09	9,99E-10	1,00E-12	3,00E-12	1,20E-09	0,00E+00	2,00E-11	-6,84E-07		
SQP ¹		dimensionless	9,10E+01	5,84E+00	9,31E-02	4,91E-05	6,70E-04	1,04E+00	0,00E+00	1,83E-01	-1,42E+02		

PM = Particulate Matter emissions; IRP = Ionizing radiation – human health; ETP-fw = Eco toxicity – freshwater; HTP-c = Human toxicity – cancer effects; HTP-nc = Human toxicity – non cancer effects; SQP = Potential Soil Quality Index (dimensionless)

^{2.} This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator.

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009"

^{*}INA Indicator Not Assessed

^{1.} The results of this environmental impact indicator shall be used with care as the uncertainties on these results are high or as there is limited experienced with the indicator

Resource us	e										
	dicator	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
Ç.C	PERE	MJ	3,59E+01	6,41E-02	2,30E-02	2,39E-05	1,96E-02	2,12E-02	0,00E+00	1,62E-03	-4,30E+01
4	PERM	MJ	7,08E+00	0,00E+00	-6,73E+00						
্ৰ কু	PERT	MJ	4,30E+01	6,41E-02	2,30E-02	2,39E-05	1,96E-02	2,12E-02	0,00E+00	1,62E-03	-4,97E+01
	PENRE	MJ	4,05E+02	5,09E+00	1,66E-01	1,76E-04	1,43E-03	1,48E+00	0,00E+00	8,25E-02	-3,81E+02
Å	PENRM	MJ	1,50E+01	0,00E+00	-1,40E+01						
IA	PENRT	MJ	4,20E+02	5,09E+00	1,66E-01	1,76E-04	1,43E-03	1,48E+00	0,00E+00	8,25E-02	-3,94E+02
	SM	kg	8,60E-02	0,00E+00	9,42E-05	6,45E-07	1,95E-06	0,00E+00	0,00E+00	0,00E+00	-7,98E-02
2	RSF	MJ	7,16E-01	2,24E-03	1,14E-04	1,91E-06	1,53E-05	7,59E-04	0,00E+00	0,00E+00	-6,84E-01
	NRSF	MJ	2,50E-01	7,51E-03	1,15E-03	1,89E-06	4,03E-05	2,71E-03	0,00E+00	0,00E+00	-2,14E-01
8	FW	m^3	4,59E-01	5,80E-04	2,70E-04	3,02E-05	1,46E-04	1,58E-04	0,00E+00	9,89E-05	-4,33E-01

PERE = Use of renewable primary energy excluding renewable primary energy resources used as raw materials; PERM = Use of renewable primary energy resources; saw materials; PERT = Total use of renewable primary energy resources; PENRE = Use of non renewable primary energy resources used as raw materials; PENRM = Use of non renewable primary energy resources; SM = Use of secondary materials; REF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

[&]quot;Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life -	End of life - Waste													
Indicator		Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D			
ā	HWD	kg	4,75E-01	2,79E-04	5,32E-03	3,33E-08	2,69E-07	7,64E-05	0,00E+00	9,03E-08	-4,56E-01			
Ū	NHWD	kg	7,76E+00	4,43E-01	8,76E-03	2,13E-06	1,12E-04	7,21E-02	0,00E+00	6,00E-01	-7,07E+00			
8	RWD	kg	8,53E-04	3,48E-05	9,12E-07	1,03E-09	1,33E-08	1,01E-05	0,00E+00	5,62E-07	-7,98E-04			

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

End of life	Output flow										
In	licator	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
@▷	CRU	kg	0,00E+00								
\$₽	MFR	kg	2,44E-01	0,00E+00	1,09E-02	6,09E-07	1,54E-06	0,00E+00	0,00E+00	0,00E+00	-2,28E-01
DØ	MER	kg	3,63E-02	0,00E+00	1,25E-06	1,89E-08	1,56E-07	0,00E+00	0,00E+00	0,00E+00	-3,42E-02
5 D	EEE	МЈ	7,58E-01	0,00E+00	3,58E-01	3,72E-08	1,57E-07	0,00E+00	0,00E+00	0,00E+00	-7,18E-01
DØ.	EET	МЈ	1,15E+01	0,00E+00	5,41E+00	5,64E-07	2,37E-06	0,00E+00	0,00E+00	0,00E+00	-1,08E+01

CRU = Components for re-use; MFR = Materials for recycling; MER = Materials for energy recovery; EEE = Exported energy electrical; EET = Exported energy thermal

"Reading example: 9,0 E-03 = 9,0*10-3 = 0,009" *INA Indicator Not Assessed

Biogenic Carbon Content		
Indicator	Unit	At the factory gate
Biogenic carbon content in product	kg C	3,44E-03
Biogenic carbon content in accompanying packaging	kg C	2,10E-01

Note: 1 kg biogenic carbon is equivalent to 44/12 kg CO2

Additional requirements

Greenhouse gas emissions from the use of electricity in the manufacturing phase

National production mix from import, low voltage (production of transmission lines, in addition to direct emissions and losses in grid) of applied electricity for the manufacturing process (A3).

Electricity mix	Data source	Amount	Unit	
Electricity mix, Norway	ecoinvent 3.6	21,18	g CO2-eg/kWh	

Dangerous substances

The product contains no substances given by the REACH Candidate list.

Indoor environment

Not relevant

Additional Environmental Information

Additional environmental impact indicators required in NPCR Part A for construction products										
Indicator	Unit	A1-A3	A4	A5	B2	C1	C2	C3	C4	D
GWPIOBC	kg CO ₂ -eq	2,21E+01	3,14E-01	1,19E-04	1,04E-05	1,19E-04	9,81E-02	0,00E+00	2,51E-03	

GWP-IOBC: Global warming potential calculated according to the principle of instantaneous oxidation. In order to increase the transparency of biogenic carbon contribution to climate impact, the indicator GWP-IOBC is required as it declares climate impacts calculated according to the principle of instantaneous oxidation. GWP-IOBC is also referred to as GWP-GHG in context to Swedish public procurement legislation.

Bibliography

ISO 14025:2010 Environmental labels and declarations - Type III environmental declarations - Principles and procedures.

ISO 14044:2006 Environmental management - Life cycle assessment - Requirements and guidelines.

EN 15804:2012+A2:2019 Environmental product declaration - Core rules for the product category of construction products.

ISO 21930:2017 Sustainability in buildings and civil engineering works - Core rules for environmental product declarations of construction products.

ecoinvent v3, Allocation, cut-off by classification, Swiss Centre of Life Cycle Inventories.

Iversen et al., (2021) eEPD v2021.09 Background information for EPD generator tool system verification, LCA.no Report number: 07.21 Vold, M. et al. (2022) EPD generator for Building boards

Background information for EPD generator application and LCA data, LCA.no report number 05.22

NPCR Part A: Construction products and services. Ver. 2.0. April 2021, EPD-Norge.

NPCR 010 Part B for Building Boards. Ver. 4.0, March 2022, EPD-Norge.

	Program operator and publisher	Phone:	+47 23 08 80 00
	The Norwegian EPD Foundation	e-mail:	post@epd-norge.no
	Post Box 5250 Majorstuen, 0303 Oslo, Norway	web:	www.epd-norge.no
	Owner of the declaration:	Phone:	+ 47 926 35 625
STENI®	Steni AS	e-mail:	herleif.rimstad@steni.no
	Lågendalsveien 2633, 3277 STEINSHOLT	web:	www.steni.com
	Author of the Life Cycle Assessment	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
no.no	Dokka 6B, 1671	web:	www.lca.no
	Developer of EPD generator	Phone:	+47 916 50 916
(LCA)	LCA.no AS	e-mail:	post@lca.no
no.no	Dokka 6B,1671 Kråkerøy	web:	www.lca.no
ECO PLATFORM	ECO Platform	web:	www.eco-platform.org
VERIFIED	ECO Portal	web:	ECO Portal

